104 research outputs found

    Comparing traditional conceptual modeling with ontology-driven conceptual modeling: An empirical study

    Full text link
    [EN] This paper conducts an empirical study that explores the differences between adopting a traditional conceptual modeling (TCM) technique and an ontology-driven conceptual modeling (ODCM) technique with the objective to understand and identify in which modeling situations an ODCM technique can prove beneficial compared to a TCM technique. More specifically, we asked ourselves if there exist any meaningful differences in the resulting conceptual model and the effort spent to create such model between novice modelers trained in an ontology-driven conceptual modeling technique and novice modelers trained in a traditional conceptual modeling technique. To answer this question, we discuss previous empirical research efforts and distill these efforts into two hypotheses. Next, these hypotheses are tested in a rigorously developed experiment, where a total of 100 students from two different Universities participated. The findings of our empirical study confirm that there do exist meaningful differences between adopting the two techniques. We observed that novice modelers applying the ODCM technique arrived at higher quality models compared to novice modelers applying the TCM technique. More specifically, the results of the empirical study demonstrated that it is advantageous to apply an ODCM technique over an TCM when having to model the more challenging and advanced facets of a certain domain or scenario. Moreover, we also did not find any significant difference in effort between applying these two techniques. Finally, we specified our results in three findings that aim to clarify the obtained results. (C) 2018 Elsevier Ltd. All rights reserved.This research has been funded by the Ghent University Special Research Fund (BOF 01N02014) and the National Bank of Belgium.Verdonck, M.; Gailly, F.; Pergl, R.; Guizzardi, G.; Franco Martins, B.; Pastor López, O. (2019). Comparing traditional conceptual modeling with ontology-driven conceptual modeling: An empirical study. Information Systems. 81:92-103. https://doi.org/10.1016/j.is.2018.11.009S921038

    Socio-economic impact classification of alien taxa (SEICAT)

    Get PDF
    Many alien taxa are known to cause socio-economic impacts by affecting the different constituents of human well-being (security; material and non-material assets; health; social, spiritual and cultural relations; freedom of choice and action). Attempts to quantify socio-economic impacts in monetary terms are unlikely to provide a useful basis for evaluating and comparing impacts of alien taxa because they are notoriously difficult to measure and important aspects of human well-being are ignored.Here, we propose a novel standardised method for classifying alien taxa in terms of the magnitude of their impacts on human well-being, based on the capability approach from welfare economics. The core characteristic of this approach is that it uses changes in peoples' activities as a common metric for evaluating impacts on well-being.Impacts are assigned to one of five levels, from Minimal Concern to Massive, according to semi-quantitative scenarios that describe the severity of the impacts. Taxa are then classified according to the highest level of deleterious impact that they have been recorded to cause on any constituent of human well-being. The scheme also includes categories for taxa that are not evaluated, have no alien population, or are data deficient, and a method for assigning uncertainty to all the classifications. To demonstrate the utility of the system, we classified impacts of amphibians globally. These showed a variety of impacts on human well-being, with the cane toad (Rhinella marina) scoring Major impacts. For most species, however, no studies reporting impacts on human well-being were found, i.e. these species were data deficient.The classification provides a consistent procedure for translating the broad range of measures and types of impact into ranked levels of socio-economic impact, assigns alien taxa on the basis of the best available evidence of their documented deleterious impacts, and is applicable across taxa and at a range of spatial scales. The system was designed to align closely with the Environmental Impact Classification for Alien Taxa (EICAT) and the Red List, both of which have been adopted by the International Union of Nature Conservation (IUCN), and could therefore be readily integrated into international practices and policies

    The Global Open Science Cloud: Vision and Initial Successes

    Get PDF
    The Global Open Science Cloud has the potential to advance the way scientific data and resources are shared and accessed, and how global collaboration happens. However, addressing the challenges associated with its creation and ensuring inclusivity, interoperability, data privacy, and sustainability are crucial for its success. The collaborative efforts of stakeholders from different disciplines, regions, and sectors will be essential in realising the vision of a truly global and open science platform. The achievements of GOSC so far, including successful collaborations, funded projects, and the development of a common reference framework, demonstrate its potential and progress towards its goals

    A vision for global monitoring of biological invasions

    Get PDF
    Managing biological invasions relies on good global coverage of species distributions. Accurate information on alien species distributions, obtained from international policy and cross-border co-operation, is required to evaluate trans-boundary and trading partnership risks. However, a standardized approach for systematically monitoring alien species and tracking biological invasions is still lacking. This Perspective presents a vision for global observation and monitoring of biological invasions. We show how the architecture for tracking biological invasions is provided by a minimum information set of Essential Variables, global collaboration on data sharing and infrastructure, and strategic contributions by countries. We show how this novel, synthetic approach to an observation system for alien species provides a tangible and attainable solution to delivering the information needed to slow the rate of new incursions and reduce the impacts of invaders. We identify three Essential Variables for Invasion Monitoring; alien species occurrence, species alien status and alien species impact. We outline how delivery of this minimum information set by joint, complementary contributions from countries and global community initiatives is possible. Country contributions are made feasible using a modular approach where all countries are able to participate and strategically build their contributions to a global information set over time. The vision we outline will deliver wide-ranging benefits to countries and international efforts to slow the rate of biological invasions and minimize their environmental impacts. These benefits will accrue over time as global coverage and information on alien species increases

    Crossing Frontiers in Tackling Pathways of Biological Invasions

    Get PDF
    Substantial progress has been made in understanding how pathways underlie and mediate biological invasions. However, key features of their role in invasions remain poorly understood, available knowledge is widely scattered, and major frontiers in research and management are insufficiently characterized. We review the state of the art, highlight recent advances, identify pitfalls and constraints, and discuss major challenges in four broad fields of pathway research and management: pathway classification, application of pathway information, management response, and management impact. We present approaches to describe and quantify pathway attributes (e.g., spatiotemporal changes, proxies of introduction effort, environmental and socioeconomic contexts) and how they interact with species traits and regional characteristics. We also provide recommendations for a research agenda with particular focus on emerging (or neglected) research questions and present new analytical tools in the context of pathway research and managemen

    Four simple recommendations to encourage best practices in research software [version 1; referees: awaiting peer review]

    Get PDF
    Scientific research relies on computer software, yet software is not always developed following practices that ensure its quality and sustainability. This manuscript does not aim to propose new software development best practices, but rather to provide simple recommendations that encourage the adoption of existing best practices. Software development best practices promote better quality software, and better quality software improves the reproducibility and reusability of research. These recommendations are designed around Open Source values, and provide practical suggestions that contribute to making research software and its source code more discoverable, reusable and transparent. This manuscript is aimed at developers, but also at organisations, projects, journals and funders that can increase the quality and sustainability of research software by encouraging the adoption of these recommendations. Keyword

    Global guidelines for the sustainable use of non-native trees to prevent tree invasions and mitigate their negative impacts

    Get PDF
    Sustainably managed non-native trees deliver economic and societal benefits with limited risk of spread to adjoining areas. However, some plantations have launched invasions that cause substantial damage to biodiversity and ecosystem services, while others pose substantial threats of causing such impacts. The challenge is to maximise the benefits of non-native trees, while minimising negative impacts and preserving future benefits and options. A workshop was held in 2019 to develop global guidelines for the sustainable use of non-native trees, using the Council of Europe – Bern Convention Code of Conduct on Invasive Alien Trees as a starting point. The global guidelines consist of eight recommendations: 1) Use native trees, or non-invasive non-native trees, in preference to invasive non-native trees; 2) Be aware of and comply with international, national, and regional regulations concerning non-native trees; 3) Be aware of the risk of invasion and consider global change trends; 4) Design and adopt tailored practices for plantation site selection and silvicultural management; 5) Promote and implement early detection and rapid response programmes; 6) Design and adopt tailored practices for invasive non-native tree control, habitat restoration, and for dealing with highly modified ecosystems; 7) Engage with stakeholders on the risks posed by invasive non-native trees, the impacts caused, and the options for management; and 8) Develop and support global networks, collaborative research, and information sharing on native and non-native trees. The global guidelines are a first step towards building global consensus on the precautions that should be taken when introducing and planting non-native trees. They are voluntary and are intended to complement statutory requirements under international and national legislation. The application of the global guidelines and the achievement of their goals will help to conserve forest biodiversity, ensure sustainable forestry, and contribute to the achievement of several Sustainable Development Goals of the United Nations linked with forest biodiversity

    Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras

    Get PDF
    Understanding drivers of success for alien species can inform on potential future invasions. Recent conceptual advances highlight that species may achieve invasiveness via performance along at least three distinct dimensions: 1) local abundance, 2) geographic range size, and 3) habitat breadth in naturalized distributions. Associations among these dimensions and the factors that determine success in each have yet to be assessed at large geographic scales. Here, we combine data from over one million vegetation plots covering the extent of Europe and its habitat diversity with databases on species' distributions, traits, and historical origins to provide a comprehensive assessment of invasiveness dimensions for the European alien seed plant flora. Invasiveness dimensions are linked in alien distributions, leading to a continuum from overall poor invaders to super invaders - abundant, widespread aliens that invade diverse habitats. This pattern echoes relationships among analogous dimensions measured for native European species. Success along invasiveness dimensions was associated with details of alien species' introduction histories: earlier introduction dates were positively associated with all three dimensions, and consistent with theory-based expectations, species originating from other continents, particularly acquisitive growth strategists, were among the most successful invaders in Europe. Despite general correlations among invasiveness dimensions, we identified habitats and traits associated with atypical patterns of success in only one or two dimensions - for example, the role of disturbed habitats in facilitating widespread specialists. We conclude that considering invasiveness within a multidimensional framework can provide insights into invasion processes while also informing general understanding of the dynamics of species distributions.Deutsche Forschungsgemeinschaft (264740629) Grantová Agentura České Republiky (19-28491X) Grantová Agentura České Republiky (19-28807X) Grantová Agentura České Republiky (RVO 67985939) Austrian Science Fund (I 2086 - B29) Bundesministerium für Bildung und Forschung (01LC1807A) Eusko Jaurlaritza (IT299-10) National Research Foundation of Korea (2018R1C1B6005351) University of Latvia (AAp2016/B041//Zd2016/AZ03) Villum Fonden (16549
    corecore